New Decalin Derivatives, Eujavanoic Acids A and B, from Eupenicillium javanicum

Shigeru Okamoto, ${ }^{\dagger}$ Tomoo Hosoe, ${ }^{\dagger}$ Takeshi Itabashi, ${ }^{\dagger}$ K oohei Nozawa,*,† Kaoru Okada, ${ }^{\ddagger}$ Galba Maria de Campos Takaki,ł Minoru Chikamori,§ Takashi Yaguchi,§ Kazutaka Fukushima,§ Makoto Miyaji,§ and Ken-ichi Kawai ${ }^{\dagger}$
Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142-8501, J apan, Nucleo de Pesquisas em Ciencias Ambientais, Universidade Catolica de Pernambuco, Rua Nunes Machado, 42 Boa Vista, Bloco J, Recife, 50050-590, Pernambuco, Brazil, and Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8673, J apan

Received February 24, 2004

Abstract

Two new decal in derivatives, eujavanoic acids A (1) and B (2), were isolated from Eupenicillium javanicum, along with several compactin derivatives. The structures of $\mathbf{1}$ and $\mathbf{2}$ were determined by spectroscopic methods and modified Mosher's method. The side chain (2-methylbutanoyloxy) and acid functionalities of compactin derivatives were necessary to show the antifungal activity.

We have been searching for fungal metabolites with antifungal activity against pathogenic filamentous fungi, Aspergillus fumigatus and A. niger, and/or pathogenic yeasts, Candida albicans and Cryptococcus neoformans. During our research, we found that an organic extract of Eupenicillium javanicum IF M 52670 showed characteristic and strong antifungal activity against A. fumigatus. ${ }^{1}$ Fractionation of the extract led to the isolation of new decalin derivatives, designated eujavanoic acids A (1) and B (2), along with compactin (3) ${ }^{2}$ and its derivatives: dihydrocompactin (4), ${ }^{3}$ ML-236A (5), ${ }^{4}$ 3,5-dihydro-3 α-hy-droxy-ML-236C (6), ${ }^{5}$ 3,5-dihydro-3-oxo-ML-236C (7), the acid form (8), and the ethyl ester (9) of compactin (3). In this paper, we report the isolation and structure determination of eujavanoic acids $A(\mathbf{1})$ and $B(\mathbf{2})$ and the isolation of a compound having anti-A. fumigatus activity from E. javanicum. Furthermore, we describe the relationship between the antifungal activity and structures of compactin derivatives.

The molecular formula of $\mathbf{1}$ was established as $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}$ by HREIMS. The IR absorption regions at 3200, 36002400,1720 , and $1650 \mathrm{~cm}^{-1}$ and ${ }^{13} \mathrm{C}$ NMR signals at $\delta_{\mathrm{C}} 177.7$ and 203.1 indicated the presence of a hydroxyl group, a carboxyl group, and a conjugated ketone in 1 . The ${ }^{13} \mathrm{C}$ NMR spectrum revealed the presence of four sp^{2} carbons including two carbonyl carbons. Hence $\mathbf{1}$ is bicyclic.

The structural fragment of 1 shown by the bold line in Figure 1 was established by the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMQC spectra of 1. The cross-peaks between the carboxyl carbon ($\delta_{\mathrm{C}} 177.7$) and four protons at C-9 and C-10 ($\delta_{\mathrm{H}} 1.66,1.91$, 2.31, and 2.40) in the HMBC spectrum proved that the carboxyl group is connected at C-10. Furthermore, the HMBC correlations from 1-H (δ_{H} 1.78) and 2-methyl protons ($\delta_{H} 1.03$) to the conjugated ketone (δ_{C} 203.1) suggested that the conjugated ketone was attached to C-2. Considering the above result and the presence of an ol efinic singlet ($\delta 5.80$) in $\mathbf{1}$, we conduded that $\mathbf{1}$ was the decalin derivative as shown in Figure 1. This conclusion was supported by other HMBC correlation peaks, which are indicated in Figure 1.

[^0]

Figure 1. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMBC correlation of eujavanoic acids A (1) and B (2).

The molecular formula of $\mathbf{2}$ was established as $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3}$ by $\mathrm{HRCI}-\mathrm{MS}$. The IR spectrum of $\mathbf{2}$ showed absorptions at 3400, 3300-2500, and $1710 \mathrm{~cm}^{-1}$, indicating the presence of a hydroxyl and one carboxyl group. Since the ${ }^{13} \mathrm{C}$ NMR spectrum of 2 displayed three sp^{2} carbon peaks that included a carboxyl group, it was clear that 2 was also bicyclic.

The structural fragment of $\mathbf{2}$ shown by the bold line in Figure 1 was established by the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMQC spectra. The cross-peaks between the carboxylic carbon (δ_{C} 175.0) and the four protons at C-9 and C-10 ($\delta_{H} 1.38,1.85-$ 1.95, 2.18, and 2.37) in the HMBC spectrum of 2 proved that the carboxyl group is connected with C-10. We concluded that $\mathbf{2}$ was the decalin derivative as shown in Figure 1, because pairwise correlations in the HMBC spectrum of 2 existed between $2-\mathrm{H}$ at $\delta_{\mathrm{H}} 2.28$ and $\mathrm{C}-8 \mathrm{a}$ at $\delta_{\mathrm{C}} 39.6,3-\mathrm{H}$ at $\delta_{\mathrm{H}} 5.60$ and $\mathrm{C}-4 \mathrm{a}$ at $\delta_{\mathrm{C}} 42.9,4-\mathrm{H}$ at $\delta_{\mathrm{H}} 5.33$ and $\mathrm{C}-5$ at $\delta_{\mathrm{C}} 43.4$, and even $6-\mathrm{H}$ at $\delta_{\mathrm{H}} 3.56$ and $\mathrm{C}-4 \mathrm{a}$. The conclusion was supported by other HMBC correlation peaks, which are indicated in Figure 1.
The relative configuration of eujavanoic acids A (1) and $B(\mathbf{2})$ is proposed on the basis of NOESY data (Figure 2). NOESY correlations of 2-Meto $9-\mathrm{H}$ and 8a-H and of 8ax-H to $1-\mathrm{H}$ and $6-\mathrm{H}$ observed in both $\mathbf{1}$ and $\mathbf{2}$ suggested that $2-\mathrm{Me}, 9-\mathrm{H}, 8 \mathrm{a}-\mathrm{H}$, and $6-\mathrm{OH}$ are all on the same face of the ring system, with $2-\mathrm{Me}$ and $8 \mathrm{a}-\mathrm{H}$ in axial orientations and $6-\mathrm{OH}$ in equatorial orientation.

To confirm the absolute configuration, the advanced Mosher's method ${ }^{6}$ was applied to eujavanoic acids A (1) and B (2). The (R)- and (S)- α-methoxy- α-(trifluoromethyl)-

Figure 2. NOESY correlation of eujavanoic acids $A(\mathbf{1})$ and $B(\mathbf{2})$.

(10)
(11)

Figure 3. Differences of chemical shifts ($\Delta \delta$ in hertz) between the (R)- and (S)-MTPA esters of $\mathbf{1 0}$ and 11.
phenylacetic acid (MTPA) esters of methyl esters (10 and 11) of $\mathbf{1}$ and $\mathbf{2}$ were synthesized, and the values of the chemical shift differences between the (R)- and (S)-MTPA esters [$\Delta \delta=\delta_{\mathrm{S}}-\delta_{\mathrm{R}}$ in hertz (500 MHz)] were calculated. From the results (Figure 3), both eujavanoic acids A and B were assigned the S-configuration at C-6, as depicted in 1 and 2.

The analyses of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, $\mathrm{HMQC}, \mathrm{HMBC}$, and NOESY proved that 6 was the lactone form of sodium $3 \alpha-$ hydroxy-3,5-dihydro-ML-236C, originally isolated from Paecilomyces viridis L-68. ${ }^{5}$ The ketone derived from 6 by treatment with active MnO_{2} was identical to 7 on the basis of spectroscopic data. Therefore, the structure of 7 was confirmed. Compound 9 was identical to the ethyl ester derived from $\mathbf{3}$ by treatment with KOH in EtOH .

The antifungal activity was determined by the paper disk method against A. fumigatus. Bioassay-directed separation of the extract led to the isolation of the active compound (8). The mol ecular formula of $\mathbf{8}$ was established as $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{6}$ by electron-impact mass spectrometry (EIMS) (${ }^{+}$, 408) and the analysis of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}$ was similar to that of 3, except for the chemical shifts of the protons in the lactone ring. Compound $\mathbf{8}$ was readily converted to $\mathbf{3}$ by heating in CHCl_{3}. Hence, active compound 8 was determined as the acyclic form of the lactone in compactin (3). 8 showed strong growth inhibition against A. fumigatus (18 mm inhibition zone at $1.0 \mu \mathrm{~g} / \mathrm{disk}$) and C. al bicans (17 mm inhibition zone at $5.0 \mu \mathrm{~g} / \mathrm{disk}$), whereas other metabolites ($\mathbf{1}-\mathbf{7}$ and 9) showed no antifungal activity at $100 \mu \mathrm{~g} / \mathrm{disk}$.

Compounds 4-7 and 4a- α-tetrahydrocompactin (12) derived from 4 by hydrogenation with 10% Pd-C showed no antifungal activity. When treated with 5% sodium hydroxide in DMF, the acyclic analogues 13-17 were formed. After purification, the antifungal assay of 13-17 against A. fumigatus was performed (Table 1). Compound 13 derived from $\mathbf{4}$ and $\mathbf{1 7}$ from $\mathbf{1 2}$ showed strong activity as well as that of $\mathbf{8}$ against A. fumigatus, but the other acids $\mathbf{1 4 - 1 6}$ showed no antifungal activity up to $100 \mu \mathrm{~g} /$ disk. Therefore, it was clear that a 2-methylbutanoyloxy residue and carboxyl group in the side chains of compactin derivatives are necessary in order to show the anti-A. fumigatus activity.

Experimental Section

General Experimental Procedures. General experimental procedures were described in the previous paper. ${ }^{1}$ IR spectra were recorded on a J ASCO FT/IR-5300 spectropho-

Table 1. Antifungal Activity of Acid Forms of Compactin Derivatives against A. fumigatusa

compound $(\mathrm{mg} / \mathrm{disk})$	AMPB $^{\mathrm{b}}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 3}$	$\mathbf{1 7}$
10	13	30	-	32	22
5	14	27	-	21	18
1	11	18	-	16	+
0.5	+	(16)	-	-	-

${ }^{\text {a }}$ The diameter of inhibition circle is indicated in mm. The parentheses mean slightly growing in the inhibition circle. The plus (+) means slight inhibition, and the minus $(-)$ means no inhibition. ${ }^{\mathrm{b}}$ Amphotericin B.
tometer. HPLC was performed with a Senshu SSC-3160 pump (flow rate, $7 \mathrm{~mL} / \mathrm{min}$), equipped with a Shimamura YRD-883 RI-detector and HPLC column, YMC Pack SIL 06 ($10 \phi \times 300$ mm) or Senshu Pack Peagasil ORD ($20 \phi \times 250 \mathrm{~mm}$). TLC was conducted on precoated Kieselgel 60 F254 plates (5714; Merck). Spots on TLC were detected by UV light of 254 nm and/or by spraying with phosphomolybdic acid (5\%)-ceric acid (trace) in $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and subsequent heating of the plates.

Culture, Extraction, and Isolation. E. javanicum IFM 52670 was cultured at $25^{\circ} \mathrm{C}$ for 21 days in 10 Roux flasks containing 150 g of moist rice in each flask. The fermented rice was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (1:1), and the organic layer was evaporated in vacuo. The resultant extract (25 g) was suspended in $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc, and then the $\mathrm{H}_{2} \mathrm{O}$ and the organic layers were evaporated in vacuo, respectively. The EtOAc extract (12 g) showed strong antifungal activity against A. fumigatus.

The EtOAc extract was separated by column chromatography over silica gel (240 g) into six fractions: $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-$ EtOH (20:1) (2 g), $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}$ (10:1) (650 mg), $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{EtOH}(5: 1)$ (580 mg), $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}(1: 1)$ (230 mg), and EtOH . The fifth fraction $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}\right.$ (1:1)] showed antifungal activity against A. fumigatus and was further separated by low-pressure liquid chromatography (LPLC) on silica gel with benzene- EtOH (5:1) and then using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}$ (5:1) to give eujavanoic acid $A(\mathbf{1})(9 \mathrm{mg}$) and eujavanoic acid B (2) (12 mg), with benzene-EtOH ($2: 1$), followed by repeated purification by HPLC on an ODS column ($85 \% \mathrm{CH}_{3} \mathrm{CN}$) to obtain the active compound (8) (7 mg). The second fraction [$\mathrm{CH}_{2} \mathrm{Cl}_{2}$-EtOH (20:1)] was separated into three fractions by LPLC on a silica gel column using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}$ (20:1). The first fraction was purified with HPLC on an ODS column (90% $\mathrm{CH}_{3} \mathrm{OH}$) to give $9(6 \mathrm{mg})$. The next fraction including a main metabol ite was purified with HPLC on an ODS column (85\% $\mathrm{MeOH})$ to give compactin $(3)^{2}(300 \mathrm{mg})$ and dihydrocompactin $(4)^{3}(10 \mathrm{mg})$. The third fraction $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}(10: 1)\right]$ was also purified with LPLC on a silica gel column using benzene-EtOAc-EtOH (5:1:0.3) to give ML-236A (5) ${ }^{4}$ (6 mg), 3,5-dihydro-3 α-hydroxy-ML-236C (6) (20 mg), and 3,5-di hydro-3-oxo-M L-236C (7) (6 mg). Compounds 3, 4, and 5 were identified by comparison with published data. ${ }^{2-4}$

Eujavanoic acid A (1): col orless needles (EtOAc); mp 130$130.5^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{24}+84^{\circ}$ (c $\left.0.14, \mathrm{MeOH}\right)$; IR (KBr) $v_{\max } 3200(\mathrm{OH})$, $3600-2400(\mathrm{COOH}), 1720(\mathrm{COOH}), 1650(\mathrm{CO}) \mathrm{cm}^{-1}$; UV $(\mathrm{MEOH}) \lambda_{\text {max }}(\log \epsilon) 239(4.09) \mathrm{nm} ;$ EIMS m/z $252\left(\mathrm{M}^{+}\right), 234$ ($\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}$), 161 (base peak); HREIMS m/z 252.1372 (252.1361 for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}$); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.80(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-4)$, 3.72 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 2.74 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=2.1,4.6,13.1 \mathrm{~Hz}, \mathrm{H}-5$), $2.48(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.40(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 2.31(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=6.8$, 8.0, $15.5 \mathrm{~Hz}, \mathrm{H}-10$), 2.21 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 2.19 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 2.16 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 2.05 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), 1.91 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 1.78 (1 H , $\mathrm{m}, \mathrm{H}-1), 1.66(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 1.50(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 1.23(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-8), 1.03\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 125.43$ $\mathrm{MHz}) \delta 203.1$ (C, C-3), 177.7 (C, C-11), 161.3 (C, C-4a), 123.9 ($\mathrm{CH}, \mathrm{C}-4$), 70.5 ($\mathrm{CH}, \mathrm{C}-6), 44.9\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 41.9(\mathrm{CH}, \mathrm{C}-1), 41.7$ ($\mathrm{CH}, \mathrm{C}-2$), $39.5(\mathrm{CH}, \mathrm{C}-8 \mathrm{a}), 34.7\left(\mathrm{CH}_{2}, \mathrm{C}-7\right)$, $31.2\left(\mathrm{CH}_{2}, \mathrm{C}-10\right)$, $28.9\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 23.5\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 11.2\left(2-\mathrm{CH}_{3}\right)$.

Eujavanoic acid B (2): colorless microcrystal (benzeneMeOH); mp 167-168 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{24}+37.3^{\circ}$ (c $0.20, \mathrm{MeOH}$); IR $(\mathrm{KBr}) \nu_{\max } 3400(\mathrm{OH}), 3300-2500(\mathrm{COOH}), 1710(\mathrm{COOH}) \mathrm{cm}^{-1}$;

Chart 1

	R^{1}	R^{2}	R^{3}	R^{4}
$\mathbf{1}$	$=\mathrm{O}$	COOH	OH	
$\mathbf{6}$	OH	H	A	H
$\mathbf{7}$	$=\mathrm{O}$	A	H	
$\mathbf{1 0}$	$=\mathrm{O}$	COOM	OH	
$\mathbf{1 5}$	OH	H	B	H
16	$=$	O	B	H

$8 \quad \mathrm{R}^{1}=\mathrm{H} \quad \mathrm{R}^{2}=\mathrm{C}$
$9 \mathrm{R}^{1}=\mathrm{Et} \mathrm{R}^{2}=\mathrm{C}$

	R^{1}	R^{2}	R^{3}
	COOH	H	OH
$\mathbf{4}$	A	C	H
$\mathbf{1 1}$	COOMe	H	OH
13	B	C	H

	\mathbf{R}^{1}	\mathbf{R}^{2}	\mathbf{R}^{3}
$\mathbf{1 2}$	A	C	$\alpha \mathbf{H}$
17	B	C	$\alpha \mathbf{H}$

	\mathbf{R}^{1}	\mathbf{R}^{2}	\mathbf{R}^{3}
$\mathbf{3}$	A	C	H
$\mathbf{5}$	A	OH	H
$\mathbf{1 4}$	B	OH	H

$\mathrm{C}=\mathrm{OOC}$

UV (MeOH) $\lambda_{\text {max }}(\log \epsilon)$ end absorption; CI-MS m/z $239\left(\mathrm{M}^{+}+\right.$ H), 221 (base peak, $\left.\mathrm{M}^{+}+1-\mathrm{H}_{2} \mathrm{O}\right), 203\left(\mathrm{M}^{+}+1-2 \mathrm{H}_{2} \mathrm{O}\right.$); HRCIMS m/z 239.1642 (239.1647 for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{3}$); ${ }^{1} \mathrm{H}$ NMR (acetone- $\left.\mathrm{d}_{6}, 500 \mathrm{MHz}\right) \delta 5.60(1 \mathrm{H}$, ddd, $\mathrm{J}=2.9,4.7,9.7 \mathrm{~Hz}$, $\mathrm{H}-3), 5.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.7 \mathrm{~Hz}, \mathrm{H}-4)$, $3.56(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}=10.8,4.4$, $\mathrm{H}-6)$, 2.37 (1 H, ddd, J $=5.3,9.9,15.7 \mathrm{~Hz}, \mathrm{H}-10$), $2.28(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-2), 2.18(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=6.7,9.5,15.7 \mathrm{~Hz}, \mathrm{H}-10), 2.02(1 \mathrm{H}$, brd, H-7), 1.92 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 1.89 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 1.86 ($1 \mathrm{H}, \mathrm{m}$, H-8), 1.72 (1H, brt, H-4a), 1.49 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$), 1.38 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), $1.22(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 1.02(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.00(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}), 0.99$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), $0.85\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (acetone- $\left.\mathrm{d}_{6}, 125.43 \mathrm{MHz}\right) \delta 175.0(\mathrm{C}, \mathrm{C}-11), 133.7(\mathrm{CH}, \mathrm{C}-3)$, 131.5 (CH, C-4), 70.7 (CH, C-6), $43.4\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 42.9(\mathrm{CH}$, C-4a), 41.8 (CH, C-1), 39.6 (CH, C-8a), 37,1 (CH2, C-7), 32.9 ($\mathrm{CH}, \mathrm{C}-2$), $32.2\left(\mathrm{CH}_{2}, \mathrm{C}-10\right)$, $28.3\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 25.1\left(\mathrm{CH}_{2}, \mathrm{C}-9\right)$, $15.2\left(2-\mathrm{CH}_{3}\right)$.

Methylation of $\mathbf{1}$ and $\mathbf{2}$ with Diazomethane. An excess ethereal solution of diazomethane was added to a solution of eujavanoic acid $\mathrm{A}(7 \mathrm{mg})$ or $\mathrm{B}(8 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, respectively, and the solution allowed to stand for 5 min followed by evaporation to give a colorless solid.

Eujavanoic acid A methyl ester (10): ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $500 \mathrm{MHz}) \delta 5.79(1 \mathrm{H}$, brs, H-4), $3.71(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 3.68(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{COOCH}_{3}\right), 2.74(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=2.4,4.6,13.1 \mathrm{~Hz}, \mathrm{H}-5), 2.45(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-2), 2.37$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 2.26 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 2.17 ($3 \mathrm{H}, \mathrm{m}$, H-5, H-7, H-8), 2.04 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), 1.91 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 1.75 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$), $1.64(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 1.50(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 1.21(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-8), 1.02\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $125.43 \mathrm{MHz}) \delta 203.1$ (C, C-3), 173.6 (C, C-11), 161.3 (C, C-4a), $123.9(\mathrm{CH}, \mathrm{C}-4), 70.6(\mathrm{CH}, \mathrm{C}-6), 51.7\left(\mathrm{CH}_{3}, \mathrm{COOCH}_{3}\right), 44.9$ $\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 42.0(\mathrm{CH}, \mathrm{C}-1), 41.7(\mathrm{CH}, \mathrm{C}-2), 39.5(\mathrm{CH}, \mathrm{C}-8 \mathrm{a})$, $34.8\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 31.5\left(\mathrm{CH}_{2}, \mathrm{C}-10\right), 29.0\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 23.8\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-9), 11.2\left(2-\mathrm{CH}_{3}\right)$.

Eujavanoic acid B methyl ester (11): ${ }^{1} \mathrm{H} N \mathrm{NR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 5.62(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 5.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.8 \mathrm{~Hz}, \mathrm{H}-4)$, $3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 3.66(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 2.40(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ $5.0,10.1,15.1 \mathrm{~Hz}, \mathrm{H}-10$), 2.25 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), $2.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 2.09 (1H , brd, H-7), 1.99 (1H, brd, H-5), 1.92 (2H , m, H-8, H-9), $1.75(1 \mathrm{H}, \mathrm{brt}, \mathrm{H}-4 \mathrm{a}), 1.45(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 1.42(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 1.27$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 1.05 (3H, m, H-5, H-8, H-8a), 0.85 (3H, d, J = $\left.7.0 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.43 \mathrm{MHz}\right) \delta 174.3(\mathrm{C}$, C-11), 132.9 (CH, C-3), 130.1 (CH, C-4), 70.7 (CH, C-6), 51.6
$\left(\mathrm{CH}_{3}, \mathrm{COOCH}_{3}\right), 42.0\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 41.7(\mathrm{CH}, \mathrm{C}-4 \mathrm{a}), 40.8(\mathrm{CH}$, $\mathrm{C}-1), 38.3(\mathrm{CH}, \mathrm{C}-8 \mathrm{a}), 36.0\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 31.9(\mathrm{CH}, \mathrm{C}-2), 31.9$ $\left(\mathrm{CH}_{2}, \mathrm{C}-10\right), 27.3\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 24.2\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 14.8\left(2-\mathrm{CH}_{3}\right)$.

Synthesis of (S)-and (R)-MTPA Esters of 10. Dicyclohexyl carbodiimide (16 mg), 4-(dimethylamino)pyridine (6 mg), and (S)- or (R)-MTPA (16 mg) were added to a solution of eujavanoic acid A methyl ester (10) (3.5 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The reaction mixture was kept at $40{ }^{\circ} \mathrm{C}$ for 1.5 h and then washed with 0.5 M HCl , saturated NaHCO_{3}, and water, successively, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent by evaporation, the residue was purified by HPLC (silica gel) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc} 20: 1\right.$) to afford the (R)- or (S)-MTPA ester of $\mathbf{1 0}$ [4.5 mg for (S), 4.6 mg for (R$)$].
(R)-MTPA ester of 10: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$; other than phenyl signals) $\delta 5.83(1 \mathrm{H}$, brs, $\mathrm{H}-4), 5.01(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}=$ $4.6,11.3 \mathrm{~Hz}, \mathrm{H}-6), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 2.80(1 \mathrm{H}$, ddd, J = 2.1, 4.7, 13.3 Hz, H-5), 2.47 ($1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=4.3,7.2 \mathrm{~Hz}, \mathrm{H}-2$), 2.37 (1 H , ddd, J $=6.2,9.5,15.7 \mathrm{~Hz}, \mathrm{H}-10$), $2.28(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5)$, 2.26 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-10$), 2.25 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 2.07 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), 1.90 (1H, m, H-9), 1.77 (1H, m, H-1), 1.69 (1H, m, H-7), 1.62 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), $1.30(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.01\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right)$.
(S)-MTPA ester of 10: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$; other than phenyl signals) $\delta 5.84(1 \mathrm{H}$, brs, $\mathrm{H}-4), 5.01(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}=$ $4.6,11.3 \mathrm{~Hz}, \mathrm{H}-6), 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 2.85(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ 2.3, 4.9, $13.1 \mathrm{~Hz}, \mathrm{H}-5)$, $2.47(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=4.4,7.1 \mathrm{~Hz}, \mathrm{H}-2)$, 2.39 (1H, m, H-5), 2.37 (1H, m, H-10), 2.28 (1H, m, H-10), 2.24 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-8$), 2.06 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), 1.90 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 1.78 $(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=4.4,13.1 \mathrm{~Hz}, \mathrm{H}-1), 1.62(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 1.61(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-7), 1.29(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.01\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right)$.

Synthesis of (S)- and (R)-MTPA Ester of 11. Dicyclohexyl carbodiimide (12 mg), 4-(dimethylamino)pyridine (4 mg), and (S)- or (R)-MTPA (12 mg) were added to a solution of eujavanoic acid B methyl ester (11) (3.0 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The reaction mixture was kept at $40{ }^{\circ} \mathrm{C}$ for 1.5 h and then washed with 0.5 M HCl , saturated NaHCO_{3}, and water, successively, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent by evaporation, the residue was purified by normalphase HPLC (benzene) to afford the (R)- or (S)-MTPA ester of 11 [2.0 mg for (S), 2.1 mg for (R)].
(R)-MTPA ester of 11: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$; other than phenyl signals) $\delta 5.62(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=2.7,4.9,9.9 \mathrm{~Hz}, \mathrm{H}-3)$, $5.32(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.9 \mathrm{~Hz}, \mathrm{H}-4), 5.03(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}=4.6,11.3 \mathrm{~Hz}$,
$\mathrm{H}-6), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 2.40(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=5.2,10.4,15.6$ Hz, H-10), 2.26 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 2.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 2.18 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-7$), 2.05 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 1.96 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 1.92 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 1.85 (1H, m, H-4a), 1.50 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$), 1.46 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 1.40 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), $1.22(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 1.10(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.09$ (1 H , $\mathrm{m}, \mathrm{H}-8 \mathrm{a}), 0.84\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right)$.
(S)-MTPA ester of 11: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$; other than phenyl signals) $\delta 5.64$ (1 H, ddd, $J=2.7,4.9,9.9 \mathrm{~Hz}, \mathrm{H}-3$), $5.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.9 \mathrm{~Hz}, \mathrm{H}-4), 5.03(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}=4.6,11.3 \mathrm{~Hz}$, $\mathrm{H}-6), 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 2.40(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=6.4,10.2,15.7$ $\mathrm{Hz}, \mathrm{H}-10), 2.26(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.20(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=6.1,9.9,15.7$ $\mathrm{Hz}, \mathrm{H}-10), 2.12$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-7$), 1.93 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 1.91 (1 H , $\mathrm{m}, \mathrm{H}-9), 1.86(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}), 1.48(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 1.39(2 \mathrm{H}, \mathrm{m}$, H-7, H-9), 1.29 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 1.09 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 1.08 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-8 \mathrm{a}), 0.84\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right)$.

3,5-Dihydro-3-oxo-ML-236C(7): col orless amorphous powder; UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 239 \mathrm{~nm}(4.08)$; HREIMS m/z 306.1809 (306.1831 for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4}$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$) $\delta 5.74(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-4), 4.39(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13), 2.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $4.9,17.7 \mathrm{~Hz}, \mathrm{H}-14), 2.63$ (1 H , ddd, J $=1.7,3.5,17.7 \mathrm{~Hz}, \mathrm{H}-14$), $2.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.8,7.3 \mathrm{~Hz}, \mathrm{H}-2), 2.44(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 2.16$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-8$), 2.09 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), 1.94 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-12$), 1.89 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 1.77 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$), 1.74 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12$), 1.71 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), $1.62(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 1.53(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9, \mathrm{H}-10), 1.49$ $(1 \mathrm{H}, \mathrm{tq}, \mathrm{J}=3.4,13.1 \mathrm{~Hz}, \mathrm{H}-7), 1.38(1 \mathrm{H}, \mathrm{tq}, 3.5, \mathrm{~J}=13.0 \mathrm{~Hz}$, $\mathrm{H}-6), 1.21(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=3.4,12.5 \mathrm{~Hz}, \mathrm{H}-8), 1.02(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3$ $\left.\mathrm{Hz}, 2-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.43 \mathrm{MHz}\right) \delta 203.9(\mathrm{C}, \mathrm{C}-3)$, 170.4 (C, C-15), 166.0 (C, C-4a), 122.2 (CH, C-4), 77.5 (CH, $\mathrm{C}-11), 62.7$ ($\mathrm{CH}, \mathrm{C}-13$), 42.8 ($\mathrm{CH}, \mathrm{C}-1$), 41.9 ($\mathrm{CH}, \mathrm{C}-2$), 41.0 ($\mathrm{CH}, \mathrm{C}-8 \mathrm{a}$), $38.6\left(\mathrm{CH}_{2}, \mathrm{C}-14\right), 36.1\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 36.0\left(\mathrm{CH}_{2}, \mathrm{C}-12\right)$, $33.0\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 32.7\left(\mathrm{CH}_{2}, \mathrm{C}-10\right)$, $27.5\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 25.9\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-7)$, $23.7\left(\mathrm{CH}_{2}, \mathrm{C}-9\right)$, $11.4\left(2-\mathrm{CH}_{3}\right)$.

Oxidation of 3,5-Dihydro-3 α-hydroxy-ML-236C (6) with $\mathbf{M n O}_{2} . \mathrm{MnO}_{2}(100 \mathrm{mg})$ was added to a stirred solution of $3,5-$ dihydro-3 3 -hydroxy-ML-236C (6) ${ }^{5}(20 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. After $2 \mathrm{~h}, \mathrm{MnO}_{2}$ was filtered off and the solvent was evaporated. The residue was subjected to LPLC, eluting with benzene-EtOAc-EtOH (5:1:0.3), to give a ketone (5 mg) and starting material (12 mg). This ketone derivative was identical to 3,5-di hydro-3-oxo-ML-236C (7) on the basis of spectroscopic data.

Acid form (8) of compactin (3): colorless amorphous powder; EIMS m/z $408\left(\mathrm{M}^{+}\right)$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.6,500 \mathrm{MHz}\right) \delta$ $5.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.7 \mathrm{~Hz}, \mathrm{H}-4), 5.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.7,6.1 \mathrm{~Hz}$, H-3), 5.51 (1 H, brs, H-5), 5.16 (1 H , brs, H-8), 3.95 ($1 \mathrm{H}, \mathrm{m}$, H-13), 3.47 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11$), 2.31 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-8 \mathrm{a}, \mathrm{H}-14, \mathrm{H}-2^{\prime}$), $2.20(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.0,8.2 \mathrm{~Hz}, \mathrm{H}-14), 2.07(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 2.0$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 1.66 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 1.55 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-3^{\prime}$), 1.47 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12$), 1.40 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12$), 1.36 (3H, m, H-3', H-9, $\mathrm{H}-10), 1.27(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 1.09(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 1.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.7.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{CH}_{3}\right), 0.84\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right), 0.82(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.=7.6 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right)$; ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 125.43 \mathrm{MHz}\right) \delta 175.3$ (C, C-1'), 172.8 (C, C-15), 133.6 (C, C-4a), 132.8 (CH, C-3), 127.9 ($\mathrm{CH}, \mathrm{C}-4$), $123.0(\mathrm{CH}, \mathrm{C}-5), 68.5(\mathrm{CH}, \mathrm{C}-11), 67.0(\mathrm{CH}, \mathrm{C}-8)$, 65.8 (CH, C-13), $44.4\left(\mathrm{CH}_{2}, \mathrm{C}-12\right)$, $42.4\left(\mathrm{CH}_{2}, \mathrm{C}-14\right), 40.7$ ((CH, C-2'), 36.7 (CH, C-8a), 36.4 (CH, C-1), 34.3 ($\left.\mathrm{CH}_{2}, \mathrm{C}-10\right), 30.3$ ($\mathrm{CH}, \mathrm{C}-2$), $26.1\left(\mathrm{CH}_{2}, \mathrm{C}-3^{\prime}\right), 25.4\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 23.8\left(\mathrm{CH}_{2}, \mathrm{C}-9\right)$, $20.3\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 16.6\left(2^{\prime}-\mathrm{CH}_{3}\right), 13.5\left(2-\mathrm{CH}_{3}\right), 11.3\left(\mathrm{CH}_{3}, \mathrm{C}-4^{\prime}\right)$.

Hydrogenation of 4. $10 \% \mathrm{Pd}-\mathrm{C}(20 \mathrm{mg})$ was suspended in a solution of dihydrocompactin (4) (20 mg) in $\mathrm{MeOH}(4 \mathrm{~mL})$ and the mixture stirred at room temperature in a hydrogen atmosphere for 2 h . The catalyst was filtered off and the solvent evaporated in vacuo. The residue was purified by HPLC on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone (10:1) to give 4a- α tetrahydrocompactin (12) (7.5 mg).

4a- α-Tetrahydrocompactin (12): col orless amorphous powder; $[\alpha]_{\mathrm{D}}{ }^{24}+113^{\circ}$ (c 0.34); EIMS m/z 394 (M, $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{5}$); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.17$ (1 H , brs, $\mathrm{H}-8$), 4.58 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-11$), 4.35 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13$), 2.72 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.2,17.7 \mathrm{~Hz}, \mathrm{H}-14$), $2.61(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=1.4,3.9,17.7 \mathrm{~Hz}, \mathrm{H}-14), 2.38\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right)$, 1.95 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-12$), 1.93 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 1.84 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 1.67 (2H, m, H-12, H-3'), 1.55 (3H, m, H-3, H-5, H-5), 1.49 (1 H , m, H-6), 1.44 (2H, m, H-9, H-3'), 1.43 (1H, m, H-1), 1.38 (1 H ,
$\mathrm{m}, \mathrm{H}-4), 1.36$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 1.34 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 1.32 ($1 \mathrm{H}, \mathrm{m}$, H-4a), 1.19 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 1.18 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 1.17 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), $1.15\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{Z}^{\prime}-\mathrm{CH}_{3}\right), 1.12(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.1,11.0$ $\mathrm{Hz}, \mathrm{H}-8 \mathrm{a}), 1.02(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 0.91\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right)$, $0.82\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 125.43$ $\mathrm{MHz}) \delta 176.4\left(\mathrm{C}, \mathrm{C}-1^{\prime}\right)$, 170.5 (C, C-15), 76.5 (CH, C-11), 68.9 ($\mathrm{CH}, \mathrm{C}-8$), 62.7 (CH, C-13), 43.9 (CH, C-8a), 41.9 (CH, C-2'), 40.0 (CH, C-4a), $38.6\left(\mathrm{CH}_{2}, \mathrm{C}-14\right), 37.0(\mathrm{CH}, \mathrm{C}-1), 36.2\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-12)$, $33.7\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 33.1\left(\mathrm{CH}_{2}, \mathrm{C}-10\right), 32.7\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 30.9$ $\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 29.0(\mathrm{CH}, \mathrm{C}-2), 28.3\left(\mathrm{CH}_{2}, \mathrm{C}-4\right), 26.8\left(\mathrm{CH}_{2}, \mathrm{C}-3^{\prime}\right)$, $24.5\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 20.4\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 17.0\left(2^{\prime}-\mathrm{CH}_{3}\right), 11.9\left(2-\mathrm{CH}_{3}\right)$, $11.8\left(\mathrm{CH}_{3}, \mathrm{C}-4^{\prime}\right)$.

Hydrolysis of Compactin-Related Compounds. A solution of compounds 4, 5, 6, 7, and 12 in DMF (1 mL) was added separately to $5 \% \mathrm{NaOH}(3 \mathrm{~mL})$ and kept at $60^{\circ} \mathrm{C}$ for 2 h . After concentration, the residue was separated by chromatography on a column of HP20 resin (DIAION) (resin volume, 10 mL in $\mathrm{H}_{2} \mathrm{O}$) into four fractions (each 20 mL): $\mathrm{H}_{2} \mathrm{O}, 30 \% \mathrm{MeOH}, 50 \%$ $\mathrm{MeOH}, 70 \% \mathrm{MeOH}$, and $100 \% \mathrm{MeOH}$. E ach hydrolysate was eluted with $70 \% \mathrm{MeOH}$.

Sodium salt (13) of 4: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 270 \mathrm{MHz}\right) \delta 0.76$ $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right), 0.83\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 1.03$ $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{2}^{\prime}-\mathrm{CH}_{3}\right), 0.8-1.7(15 \mathrm{H}, \mathrm{m}), 1.9(1 \mathrm{H}, \mathrm{m})$, 2.1-2.4 ($4 \mathrm{H}, \mathrm{m}$), $3.6(1 \mathrm{H}, \mathrm{m}), 4.0(1 \mathrm{H}, \mathrm{m}), 5.06(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H})$, $5.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.8 \mathrm{~Hz}, \mathrm{H}-4), 5.5(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3)$.
Sodium salt (14) of 5: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 270 \mathrm{MHz}\right) \delta 0.80$ $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right), 1.0-2.4(15 \mathrm{H}, \mathrm{m}), 3.7(1 \mathrm{H}, \mathrm{m}), 4.01$ $(1 \mathrm{H}, \mathrm{m}), 4.13(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 5.37(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 5.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=5.9,9.7 \mathrm{~Hz}, \mathrm{H}-3), 5.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.6 \mathrm{~Hz}, \mathrm{H}-4)$.

Sodium salt (15) of 6: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 270 \mathrm{MHz}\right) \delta 0.70$ $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right), 0.8-2.4(19 \mathrm{H}, \mathrm{m}), 3.67(2 \mathrm{H}, \mathrm{m})$, 4.00 ($1 \mathrm{H}, \mathrm{m}$), $5.28(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$.

Sodium salt (16) of 7: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 270 \mathrm{MHz}$) $\delta 0.91$ $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.25 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right), 1.1-2.6(19 \mathrm{H}, \mathrm{m}), 3.65(1 \mathrm{H}, \mathrm{m})$, $3.90(1 \mathrm{H}, \mathrm{m}), 5.61(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$.

Sodium salt (17) of 12: ${ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathrm{OD}, 270 \mathrm{MHz}\right) \delta 0.75$ $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right), 0.83\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 1.06$ $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{2}^{\prime}-\mathrm{CH}_{3}\right), 0.8-1.7(17 \mathrm{H}, \mathrm{m}), 1.8-2.0(2 \mathrm{H}$, m), 2.1-2.4 (3H, m), $3.59(1 \mathrm{H}, \mathrm{m}), 3.98(1 \mathrm{H}, \mathrm{m}), 5.04(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-8$).
Antifungal Assay. The antifungal assay was performed by the same method as in the previous paper, except for the test culture medium (potato dextrose agar) and the recorded time (after 48 h incubation). ${ }^{7}$

Acknowledgment. We are grateful to Dr. H. Kasai and Miss N. Kobayashi of Hoshi University for NMR and mass measurements. We also thank Dr. N. Kawahara of National Institute of Health Science for NMR measurements. This study was supported in part by a Cooperative Research Program of the Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University (2003-22). This study was also performed as part of the program "Frontier Studies and International Networking of Genetic Resource in Pathogenic Fungi and Actinomycetes (FN-GRPF)" through special coordination funds for promoting science and technology from the Ministry of Education, Science, Sports and Culture, the J apanese government, 2003.

References and Notes

(1) Komai, S.; Hosoe, T.; Nozawa, K.; Okada, K.; Takaki, G. M. de C.; Fukushima, K.; Miyaji, M.; Horie, Y.; Kawai, K. Mycotoxins 2003, 53, 11-17.
(2) Brown, A. G.; Smale, T. C.; King, T. J .; Hasenkamp, R.; Thompson, R. H. J. Chem. Soc., Perkin Trans. 1 1976, 1165-1170.
(3) Lam, Y. K. T.; Gullo, V. P.; Goegelman, R. T.; J orn, D.; Huang, L.; Deriso, C.; Monachan, R. LL.; Putter, I. J. Antibiot. 1981, 34, 614616.
(4) Endo, A.; Kuroda, M.; Tsujita, Y. J. Antibiot. 1976, 29, 1346-1348.
(5) Murakawa, S.; Sakai, K.; Endo, A. J. Antibiot. 1994, 47, 108-109.
(6) Ohtani, I.; Kusumi, T.; Kashman Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092-4096.
(7) Suzuki, S.; Hosoe, T.; Nozawa, K.; K awai, K.; Y aguchi, T.; Udagawa, S. J. Nat. Prod. 2000, 63, 768-772.

NP040052S

[^0]: * To whom correspondence should be addressed. Tel: +81-3-5498-5789. Fax: +81-3-5498-5789. E-mail: nozawa@hoshi.ac.jp.
 ${ }^{\dagger}$ Hoshi University
 ¥ Universidade Catolica de Pernambuco.
 ${ }^{\S}$ Chiba University.

